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Abstract

Angular data are commonly encountered in the earth sciences and statistical descrip-
tions and inferences about such data are necessary in structural geology. In this paper
we compare two statistical distributions appropriate for complex angular data sets: the
mixture of von Mises and the projected normal distribution. We show how the number5

of components in a mixture of von Mises distribution may be chosen, and how one may
chose between the projected normal distribution and mixture of von Mises for a particu-
lar data set. We illustrate these methods with some structural geological data, showing
how the fitted models can complement geological interpretation and permit statistical
inference. One of our data sets suggests a special case of the projected normal distri-10

bution which we discuss briefly.

1 Introduction

Angular data are commonly encountered in geology. An angular variable may be a di-
rection, such as the direction of dip of a fault or bedding plane, or a palaeomagnetic
vector. Alternatively an angular variable may be an orientation (which could be ex-15

pressed by either of two opposite directions) such as the orientation of vertical faults
or bedding planes or the orientation of primary palaeocurrent lineations where the di-
rection of flow is unknown. Directional variables are distributed on the unit circle, and
so have the particular property that the upper bound, 2π radians, and the lower bound,
zero, are equivalent. They therefore cannot be treated as though they were distributed20

over some subset of the real numbers, and require special treatment for statistical anal-
ysis (Mardia and Jupp, 2000).

The von Mises distribution is commonly used for the statistical analysis of angular
data. The distribution has two parameters, a mean direction and a concentration pa-
rameter, κ. The latter parameter measures the dispersion of the variable about the25

mean. At its minimum, κ = 0, the von Mises distribution is the uniform distribution over
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the unit circle. As κ increases so the von Mises distribution increasingly resembles the
Gaussian with variance 1/κ.

The von Mises distribution has been widely used in earth science, and software
for analysis of angular data including methods based on the von Mises distribution
have been made available (e.g., Jones, 2006). For example, Coblentz and Richardson5

(1995) examined global data on maximum horizontal compressive strength, and ex-
amined local evidence for coherence of stress direction by the Rayleigh test which is
equivalent to a comparison of the von Mises distribution with κ > 0 against a uniform al-
ternative. Witts et al. (2012) used a similar procedure to identify trends in palaeocurrent
data from the dip and dip azimuth of sand bars in a Cenozoic sedimentary succession10

in Indonesia. Sen and Mamtani (2006) used the κ parameter of the von Mises distri-
bution to characterize the preferential orientation of biotite in thin sections of granite
which was related to variations in regional strain. O’Brien et al. (2012) used von Mises
distributions to characterize the orientations of fault plane solutions – with confidence
intervals – before, during and after seismic swarms.15

The von Mises distribution is symmetrical and unimodal. Angular data in earth sci-
ences may often have a more complex distribution than this. There may be continuous
variation in the orientation of particular features; for example the preferential direction of
structures in sedimentary deposits in palaeochannels are likely to respond to channel
orientation and flow direction which will vary at metre to kilometre scales. Distributions20

of angular data may therefore be asymmetric and multimodal.
One way to model such complex variation is to treat it as a mixture of von Mises

distributions (MVM). The MVM model that we considered, with g components has 3g−1
parameters: g mean directions and values of κ and the g−1 independent proportions of
the components. By including sufficient components it is possible to model a distribution25

of angles with multiple modes and asymmetry.
An alternative model for more complex distributions of angular data is the projected

normal (PN) distribution. If y is a realization of a bivariate random variable, Y, on the
plane R2, and Pr{Y = 0} = 0, then its radial projection ||y| |−1

y is a random vector on the
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unit circle which can be converted to a vector of random angles relative to some direc-
tion treated as 0. In the PN distribution y is a realization of a bivariate normal variable
N2(µ,Σ) on the plane. This distribution is discussed by Mardia and Jupp (2000) and
a clear and succinct summary is provided by Wang and Gelfand (2013). If µ = 0 and
Σ ∝ I then the PN distribution is equivalent to a uniform distribution on the circle. Allow-5

ing µ 6= 0 gives rise to a non-uniform but unimodal and symmetrical distribution on the
circle, and further generalization so that Σ is any valid covariance matrix gives rise to
a flexible distribution on the circle which can be asymmetrical and bimodal. Wang and
Gelfand (2013) explore the PN distribution in a Bayesian setting, including regression
models in which the parameter µ is modelled as a linear function of covariates.10

The MVM and PN distributions are flexible models for complex distributions of angu-
lar data. We are not aware of any examples of their use in structural geology, although
they would clearly be suitable in circumstances where simpler symmetrical and uni-
modal distributions would not be appropriate. Some practical questions remain for their
application. First, how many components of the MVM model are justified for a particular15

data set? Second, given that MVM for g > 2 has more parameters than the PN model,
how can one decide when the more complex model is justified?

In this paper we demonstrate the use the mixture of von Mises and the PN distribu-
tion as models for three sets of angular data from structural geology. We address the
question of how to select the number of components, g, of the MVM for a particular20

data set, and the decision whether the MVM or PN model is preferable in a particular
case. We use maximum likelihood to estimate parameters of the PN distribution, and
show how to test a hypothesis of the uniformity of the PN model over two data sets.
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2 Methods

2.1 Selection of a mixture of von Mises distributions

The mixture of von Mises distribution, as used here, comprises g different von Mises
distributions, each with an associated mixture weight αi , i = 1,2, . . . ,g which is the prob-
ability that an event is drawn from the i th distribution. The parameters of the MVM distri-5

bution, for specified g, can be estimated by maximum likelihood estimation (MLE). The
MVM distribution is identifiable (Holzmann et al., 2004) but a numerical approximation
to the likelihood function is needed because the MLE of the κ parameter includes a ra-
tio of Bessel functions. In this study we used the movMFprocedure from the package
of that name developed by Hornik and Grün (2013) for the R platform (R development10

core team, 2013). This finds the MLE by an Expectation Maximization algorithm (e.g.,
Banerjee et al., 2005).

We are interested here in how many components to specify in the MVM model for
a data set. The general problem is whether the improvement in the likelihood that we
obtain by fitting g+1 rather than g components with an additional three parameters is15

justified. In general two nested models, where the simpler (null) model is a particular
case of the more general with parameters fixed to some value, may be compared on
their log likelihood ratio, `A − `N , where `A and `N are the maximized log likelihoods
obtained for the more complex and the null models respectively. It is necessary, for
inference, to know the distribution of the ratio when the null model holds. In regular20

cases, asymptotically, L = 2(`A−`N ) is distributed as χ2 with degrees of freedom equal
to the number of additional parameters in the more complex model. However, mixture
models are not regular because the null model is at the boundary of the parameter
space for the alternative. The distribution of L can be counterintuitive at the boundary
of the parameter space, see for example, Clifford (2006). A solution to this problem25

has been proposed for the comparison of the two-component MVM distribution with
a single von Mises distribution, in the case where the κ parameter is common to both
components of the MVM (Fu et al., 2008). This does not address the general problem
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of comparing MVM models for increasing values of g. For this reason we computed the
distribution of lg,g+1 = `g+1−`g for any comparison between a MVM with g components
(log likelihood `g) and one with g+1 components (log likelihood `g+1) by Monte Carlo
simulation. This approach has been used previously to identify the number of compo-
nents in a mixture model, e.g. Aitkin et al. (1981). The distribution of the log likelihood5

ratio lg,g+1 under some model with g components may depend on the parameters of
the components and how well-separated they are on the circle. For this reason we
accounted for uncertainty in the estimated parameters of the null model by a boot-
strapping step. A bootstrap sample from the data was drawn and a MVM model with g
components was fitted, a single parametric bootstrap sample from the fitted model was10

then drawn and the log likelihood ratio for MVM models with g and g+1 components
was calculated. This step was repeated to generate the full Monte Carlo sample of the
log likelihood ratio. We are not aware of a comparable combination of a bootstrap sam-
ple from the data with a parametric bootstrap, but note that it is comparable, although
not identical, with the “double bootstrapping” procedure of Mclachlan and Peel (1997).15

The full procedure is described below.
We fitted MVM distributions with g and g+1 components to our n data, using the

movMFprocedure. We computed the log of the ratio of likelihoods for the two distribu-
tions, which we denote by l̂g,g+1. To obtain a distribution for this ratio under the null
model we undertook the following steps.20

1. A bootstrap sample was drawn from the data and the parameters of the MVM
model with g components were estimated with the movMFprocedure.

2. The rmovMF procedure from the movMFlibrary was used to generate a random
sample from the MVM distribution (g components) with the parameters estimated
from the bootstrap sample.25

3. We then fitted the MVM distribution with g and with g+1 components to the
simulated values, and computed l̂g,g+1.

4. Steps 1–3 above were repeated 1000 times in total.
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The proportion of values of the log likelihood ratio in the resulting sample larger than
l̂g,g+1 was computed, P̂g. If P̂g ≥ 0.05 then the null model (g components) was ac-
cepted. This procedure was followed, starting with g = 1 and testing an alternative
distribution with two components. If the null model was rejected then a distribution with
three components was compared to the distribution with two and so on until the null5

model for some g was accepted.

2.2 Maximum likelihood estimation of the PN distribution and comparison with
the selected MVM distribution

A PN distribution of angles can be specified by the parameters of the bivariate nor-
mal distribution whose radial projection corresponds to points on the unit circle. To10

give a unique parameterization for any distribution on the circle we followed Wang and
Gelfand (2013) by fixing the variance of one of the normal variables to 1.0. There are
four parameters to be estimated: the two elements of the mean vector, µ, the correla-
tion coefficient, ρ which takes values in the interval (−1,1) and the standard deviation
of the second normal variable, τ which takes values τ > 0. These were estimated by15

maximum likelihood, using the PN density given by Wang and Gelfand (2013):

f (θ|µ,ρ,τ) = C(η)−1
[
φ2 {µ1,µ2|0,Σ} +

aD(η)Φ1 {D(η)}φ1

{
a(µ1 sinθ−µ2 cosθ)/

√
C(η)

}]
, (1)

where θ is an angle, obtained from the radial projection of the bivariate normal distri-20

bution by the arctan∗ function defined by Wang and Gelfand (2013), η is the vector of
values [θ,µ1,µ2,ρ,τ]T, φ2

(
x1,x2|µ,Σ

)
is the bivariate normal probability density func-

tion (pdf) with specified parameters, φ1(x) is the standard normal pdf and Φ1(x) is the
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standard normal distribution function,

Σ =
[
τ2 τρ
τρ 1

]
,

a =
(
τ
√

1−ρ2

)−1

,

C(η) = a2
(

cos2θ−ρτ sin2θ+ τ2 sin2θ
)

D(η) =
a2 {µ1 (cosθ−ρτ sinθ)+µ2τ (τ sinθ−ρcosθ)}

C(θ)−
1
2

5

The maximum likelihood estimates µ̂, ρ̂ and τ̂ maximize the likelihood function
L(µ,ρ,τ|θ) = f (θ|µ,ρ,τ), given the data in θ. The likelihood was maximized with the
optim procedure in R.

For g ≥ 2 the MVM distribution has more parameters than the PN. Having fitted both10

to a data set, the question remains whether the greater complexity of the MVM is
justified by its goodness of fit. We addressed this by computing the Akaike Information
Criterion (AIC) (Akaike, 1973) for each of the alternative models:

A = −2` +2Np, (2)
15

where ` is the maximized (full) log likelihood for a model with Np parameters. The
model with the smallest A is selected, so effectively the selection is based on the likeli-
hood with a penalty for the model complexity as measured by Np.

2.3 Modelling variations in the mean vector of the PN distribution

Wang and Gelfand (2013) showed that the PN distribution for angular observations can20

be fitted in the form of a regression model in which the elements of the mean vector µ
are expressed as linear functions of predictors. The parameters τ and ρ remain fixed,
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but considerable flexibility in the form of the angular distribution is still possible. In this
paper we consider the case where the predictor is a categorical variable with P levels
(e.g. P stratigraphic units). The modelled values of the mean vector for n observations
are

µ = MX, (3)5

where X is a P ×n design matrix with element X{i , j ,} set to 1 if the i th observation is
in the j th level of the categorical predictor and set to 0 otherwise and

M =
[
µ1,1 µ1,2 . . . µ1,P
µ2,1 µ2,2 . . . µ2,P

]
10

where µ1,j is the modelled value of µ1 for an observation corresponding to the j th level
of the categorical predictor. The modelled values of µ2 are defined similarly from the
elements of the second row of M. The elements of M may be estimated by maximum
likelihood by substituting Eq. (3) for µ in the likelihood function.

3 Case studies15

3.1 West Cumbria dip directions

3.1.1 The data

The first two data sets consist of the observations of dip direction recorded for two units
in the British Geological Survey’s map sheets at 1 : 50 000 in West Cumbria, north-west
England. The units are the Sherwood Sandstone Group (Triassic sandstone) and the20

Windermere Supergroup (Ordovician–Silurian mudstone, sandstone and limestone).
A total of 90 observations were available for the Sherwood Sandstone Group and 572
for the Windermere Supergroup. The data are shown in Fig. 1a and b by rose diagrams
which show the relative frequency of observations in bins of width π/10 radians.
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3.1.2 MVM distribution and comparison with PN

Table 1 shows the results from comparison of MVM distributions with increasing num-
bers of components. In the case of the Sherwood Sandstone Group there was evidence
to select the MVM distribution with two components over a single von Mises distribu-
tion, but not to reject the model with two components in favour of one with three. In5

the case of the Windermere Supergroup a mixture model with five components was
selected.

Table 2 shows the results from the comparison of the selected MVM model with a PN
model for both the Sherwood Sandstone Group and the Windermere Supergroup dip
directions, and Fig. 2a and b shows the probability densities for these two distributions10

wrapped around the circle. In both cases the AIC was smaller for the more complex
MVM distribution.

In the case of the Sherwood Sandstone Group the clear difference between the PN
distribution and the MVM is that in the latter there is a stronger contrast between the
tightly distributed subset of dip directions towards the south-west (mean direction is15

4.07 radians or 233 degrees) and a second subset with a mean direction close to north
(6.03 radians or 346 degrees) and a wider dispersion. Although the PN distribution
is bimodal, the contrast between the two modes is less pronounced, and the MVM
distribution better captures this heterogeneity in the data. Geologically, the south-west
dips are found in the west of the study area in a relatively small area where there is20

a relatively simple consistent structure and good exposure of the geology. The roughly
northern dips are found mainly in northern Cumbria, and their dispersion may reflect
the fact both that they are spread out along the crop of the Sherwood Sandstone Group
encompassing greater structural variability, and that they are subject to greater obser-
vation error because the dips are smaller.25

The greater complexity of the MVM model for the Windermere Supergroup may
partly reflect the fact that there are more data available to support a complex model,
but the fitted model also makes geological sense. In the study area the Windermere
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Supergroup is subject to cyclindrical folding which would be expected to give rise to
dips of approximately equal frequency in a north-west and south-east direction. Both
fitted distributions as illustrated in Fig. 2b show modes in these directions, but the dom-
inant mode is in a south-east direction. The structure of the Windermere Supergroup
in the study areas is complicated by a major fault trending north-east–south-west. This5

may introduce different dominant dip directions locally, which may explain the rather
more complex form of the selected MVM distribution. In particular, some of the folding
in the vicinity of the fault is overturned, so that both limbs of the fold dip to the south-
east. This accounts for the asymmetry between the two dominant modes of both fitted
distributions.10

3.2 Bangladesh anticlinal axial planes and Landsat-derived lineaments

3.2.1 The data

These two data sets, from eastern Bangladesh, are presented by Davis and Sampson
(2002). They are both orientation data rather than observations with a single direction
in the interval [0,2π]. The first set comprises 32 observations of the orientation of the15

axial plane of a series of anticlines. The second set comprises orientations of 40 major
lineaments identified by interpretation of Landsat imagery. Davis and Sampson (2002)
compare the orientations in the two data sets by an analysis assuming that each has
an underlying von Mises distribution. In this paper we compare the MVM and PN dis-
tributions for the Landsat data set, and then evaluate evidence that the two sets of20

orientations are different by fitting PN distributions. The original orientation data were
first presented as angular data over the range [0,π], and then doubled so that they are
distributed on the circle. Figure 1c and d shows the data as rose diagrams.
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3.2.2 MVM distribution and comparison with PN

As shown in Table 1, both these variables are better-fitted by a MVM with two com-
ponents than by a single von Mises distribution, but adding a third component is not
justified. As shown in Table 2, the AIC was smallest for the MVM model in the case
of the anticline planes, but for the PN model in the case of the Landsat-derived linea-5

ments; in this latter case the likelihood for the PN distribution was larger than for the
more complex MVM distribution. Figure 2d shows how the asymmetric and bimodal
distribution seen in the rose diagram (Fig. 1d) is fitted by the two models. The MVM
represents the complex variation of the data with two distinct components, the PN dis-
tribution is also asymmetric and bimodal, but note in particular that the MVM has a tail10

giving non-zero density between zero and about π/4 radians where there are no ob-
servations. The Landsat lineaments data illustrate the flexibility of the PN distribution,
which in this case fits the data better than the MVM distribution but with fewer parame-
ters.

3.2.3 PN distributions for the combined Bangladesh data sets15

We considered the two data sets on orientations as a combined data set, allowing us to
examine the evidence that the two variables correspond to the same structural features.
Alternative models were fitted to the combined data set, and these are detailed in
Table 3 along with the maximized log likelihood. Figure 3 shows the density functions
wrapped around the circle for all three models.20

Model 1 is a PN distribution with single values for all parameters, i.e. all parameters
pooled for both the anticlines and the Landsat lineaments. Model 2 has separate PN
distributions for the two orientations, but with common values of the variance parame-
ters τ and ρ. This corresponds to Eq. (3) with different values of the mean vector µ for
the orientation of the anticline planes and the Landsat-derived lineaments.25

A PN distribution was fitted to each data set separately, as described in the previ-
ous section, for comparison with an alternative MVM distribution. These distributions
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considered together may be treated as a model for the combined data set with all
parameters of the PN distribution differing between the anticlines and Landsat linea-
ments. This is denoted Model 3 in Table 3 and Fig. 3. The log likelihood for this model
is the sum of the two log likelihoods for the separate fittings. Note that the parame-
ter ρ approaches the boundary value 1 for both the anticline planes and the Landsat5

lineaments. We checked that the maximum likelihood estimation was reliable by com-
puting the profile likelihood for this parameter, and found that the likelihood increased
smoothly as ρ approached 1.

This sequence of models can be regarded as nested: Models 2 and 3 are particu-
lar cases of Model 1 with certain parameters set to common values. A simpler model10

may be compared with a more complex one by computing the L statistic, twice the
log likelihood ratio. Under the null model, the simpler one nested in the alternative, the
asymptotic distribution of this statistic is χ2 with degrees of freedom equal to the differ-
ence in the number of independent parameters. However, in this case the distribution
of L is not a simple χ2 for any comparison with Model 3, because ρ is at the boundary.15

In Table 3 we present the result for a comparison of Model 1 with Model 2. Note that
we can reject Model 1 in favour of Model 2 with different parameters µ for the anticlines
and the Landsat lineaments, so we can conclude that there is reason to believe that
the orientations of the Landsat lineaments differ from those of the anticline axial planes.
This is consistent with the conclusion of Davis and Sampson (2002), but our analysis20

treats the complex distribution of the data more plausibly.
In Model 3, ρ approaches the boundary at ρ = 1. The density function given by

Eq. (1) is undefined at this boundary. When ρ = 1 and τµ2 6= µ1 the PN distribution,
which we denote by PN1, is continuous with support over half the circle . The density
of the PN distribution in this case is25

f1(θ|µ,τ) =
|c| ×φ1 (c× (τ + cot(θ−θ0))−µ2)

sin(θ−θ0)2
(4)
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for values of θ between θ0 = arctan(1/τ) and θ0 +π on the side of the circle that faces
µ = (µ1,µ2) and 0 on the side that faces away from µ. The constant c that appears in
Eq. (4) is defined as c = τµ2−µ1

(τ2+1)
and is guaranteed to be non-zero in this case. When

ρ = 1 and τµ2 = µ1 (i.e., when c = 0) the PN distribution is discrete with probabilities of
Φ1(−µ2) and 1−Φ1(−µ2) in directions θ0 and θ0 +π respectively. Similar results hold5

at the boundary ρ = −1.
The PN1 distribution might be useful because it is more parsimonious than the gen-

eral PN distribution while retaining flexibility for both unimodal and bimodal distributions
on the circle. However, as seen above, the support of PN1 is restricted to an interval
of width π and so it does not include the uniform distribution on the circle as a special10

case, which limits its usefulness for inference.

4 Conclusions

Only the Bangladesh data presented here have been analysed before, by Davis and
Sampson (2002) who assumed a simple von Mises distribution. Our results suggest
that this distribution is not appropriate for these data, in both cases there was evi-15

dence that a mixture of two von Mises distributions was more suitable than a single
von Mises, and in the case of the Landsat-derived lineaments, the projected normal
distribution was favoured over the mixture of von Mises. The projected normal distribu-
tion and a mixture of von Mises distributions can be used to model variation of angular
data in the earth sciences which may be distributed in a complex multimodal and asym-20

metric way. It is possible to select the number of components in a mixture of von Mises
distribution by a sequential testing procedure in which the log likelihood ratio is used as
a test statistic to decide whether to add a component to the model, with the distribution
of the statistic under the simpler model computed by a Monte Carlo simulation. One
may select the number of components for a mixture of von Mises distributions and com-25

pare the result with the projected normal distribution, which is potentially more parsi-
monious model, by computing the Akaike Information Criterion for the two distributions.
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Using the PN distribution it was shown that there was a significant difference between
the orientations of the anticline axial planes and the Landsat-derived lineaments from
eastern Bangladesh. Davis and Sampson (2002) drew the same conclusion, but in an
analysis which made the implausible assumption that the distribution of (doubled) ori-
entation angles within the two subsets was a simple von Mises. The approach that we5

used here could be used to test hypotheses about the relationship between angular
variables and continuous and categorical covariates.
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Table 1. Selection of Mixture of von Mises (MVM) distribution.

Number of components
g (null) g+1 (proposed) l̂g,g+1 P̂g
model model

Sherwood Sandstone Group
1 2 19.8 <0.001
2 3 2.0 0.273

Windermere Supergroup
1 2 196.3 <0.001
2 3 13.2 0.001
3 4 18.2 0.024
4 5 17.1 0.031
5 6 11.6 0.064

Bangladesh anticline axial planes
1 2 10.3 0.003
2 3 0.1 0.823

Bangladesh Landsat-derived lineaments
1 2 5.8 0.022
2 3 2.0 0.263
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Table 2. Comparison of mixture of von Mises (MVM) with g components and projected normal
(PN) distributions.

MVM PN
g Np ` AIC Np ` AIC

Sherwood Sandstone Group 2 5 −137.39 284.78 4 −145.33 298.66

Windermere Supergroup 5 14 −614.88 1257.76 4 −635.38 1278.76
Bangladesh anticline axial planes 2 5 −14.86 39.72 4 −18.3 44.6

Bangladesh Landsat-derived lineaments 2 5 −34.84 79.68 4 −33.67 75.34
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Table 3. Projected normal distributions fitted to Bangladesh anticline axial plane and Landsat-
derived lineament orientations (doubled directions). Subscript “A” for a parameter denotes that
it pertains only to observations of anticline axial plane orientations, subscript “L” denotes a pa-
rameter of the distribution of Landsat lineaments, subscript “P” denotes a pooled parameter.

Model Parameters `

Model 1 µ1,P µ2,P τP ρP
0.05 −3.49 3.94 0.83 −67.5

Model 2 µ1,A µ1,L µ2,A µ2,L τP ρP
−2.94 2.34 −4.86 −3.39 3.66 0.72 −52.9

Model 3 µ1,A µ1,L µ2,A µ2,L τA τL ρA ρL
−9.30 2.25 −16.56 −3.5 12.07 3.76 0.999∗ 0.999∗ −52.0

Comparison between models
Null Alternative L P χ2 degrees of freedom

Model 1 Model 2 29.2 4.6×10−7 2
∗ These estimates of ρ are at the boundary of the parameter space.
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(d)

0

π/23π/2

π

Fig. 1. Data: direction of dip for (a) Sherwood Sandstone group (90 data) and (b) Windermere
Supergroup (572 data); orientations (doubled from original range of [0,π]) for (c) Bangladesh
anticline axial planes (32 data) and (d) Bangladesh Landsat-derived lineaments (40 data). Note
that segments of the rose diagrams are proportional to relative frequency within each data set
separately, so are not comparable between data sets with respect to numbers of observations.
If all data appeared within a single bin of the rose diagram then the corresponding segment
would be equal in length to the radius of the circle.
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+
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Fig. 2. Density of fitted Projected Normal distributions (PN) and mixture of von Mises distri-
butions (MVM) wrapped around the circle: direction of dip for (a) Sherwood Sandstone group
and (b) Windermere Supergroup; orientations (doubled from original range of [0,π]) for (c)
Bangladesh anticline axial planes and (d) Bangladesh Landsat-derived lineaments.
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+
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Anticline planes 

     Landsat lineaments

           All parameters pooled

Fig. 3. Density of projected normal distributions fitted to combined Bangladesh data and
wrapped around the circle. (a) Model 1, with all parameters pooled for the combined data set;
(b) Model 2, with µ modelled separately for anticline axial planes and Landsat lineaments; (c)
Model 3, with all parameters separate for anticline axial planes and Landsat lineaments.
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